

ADUBAÇÃO NITROGENADA NO DESENVOLVIMENTO DE MUDAS DE Euterpe edulis L.

FERTILIZACIÓN CON NITRÓGENO EN EL DESARROLO DE Euterpe edulis L.

NITROGEN FERTILIZATION IN THE DEVELOPMENT OF Euterpe edulis L. SEEDLINGS

Apresentação: Pôster

Larissa Benetasso Chioda¹; Thiago Souza Campos²; João Eliézer de Souza Batista³; Marcel Fernando da Silva⁴; Kathia Fernandes Lopes Pivetta⁵

INTRODUÇÃO

As palmeiras são plantas da família Arecaceae, sendo descritas mais de 3500 espécies reunidas em mais de 240 gêneros, espalhados por todo o mundo, principalmente nas regiões tropicais da Ásia, da Indonésia, das Ilhas do Pacífico e das Américas (LORENZI et al., 2010).

A palmeira juçara (*Euterpe edulis* L.) é nativa do Brasil e, além da importância ornamental, ecológica e sustentável, é a mais tradicional na extração de palmito doce comestível. Bovi (1998) e Tonet et al. (1999) comentam que, essa palmeira fornece palmito de bom rendimento e de boa qualidade. O Brasil é o maior produtor e consumidor de palmito doce (PORTINHO et al. 2012).

A demanda das palmeiras por nutrientes, de modo geral, é elevada, tanto na fase de crescimento vegetativo quanto na fase reprodutiva (BOVI et al., 2002; BOVI e CANTARELLA, 1996). No entanto, a literatura nacional e internacional sobre adubação de pupunheira é bastante escassa; na maioria das vezes, as doses são empiricamente recomendadas, com pouco ou nenhum suporte de resultados de experimentação (BOVI et al., 2002). Este comentário é valido, também, para as outras espécies de palmeiras.

Sendo assim, esta pesquisa foi realizada visando conhecer a resposta de mudas da

⁵ Professora Doutora em Agronomia (Produção Vegetal), (UNESP/FCAV), kathia@fcav.unesp.br

1

¹ Graduação em Engenharia Agronômica, Universidade Estadual Paulista "Júlio de Mesquita Filho" – Faculdade de Ciências Agrárias e Veterinárias (UNESP/FCAV), Jaboticabal-SP, larissabchioda@hotmail.com

² Pós-graduação em Agronomia (Produção Vegetal), (UNESP/FCAV), thiagocamposagr@gmail.com

³ Graduação em Engenharia Agronômica, (UNESP/FCAV), joaoeliezer12@gmail.com

⁴ Doutor em Agronomia (Genética e Melhoramento de Plantas), (UNESP/FCAV), m_cel22@yahoo.com.br

palmeira juçara (Euterpe edulis L.) à adubação nitrogenada.

FUNDAMENTAÇÃO TEÓRICA

A deficiência de nitrogênio é a mais comum em palmeiras desenvolvidas em recipiente (BROSCHAT, 2000; REGALADO e BALERDI, 2003); outros elementos essenciais como fósforo, cálcio, cobre, zinco, boro e cloro, ocasionalmente são verificados deficientes se são omitidos do programa de fertilização, porém, tais deficiências são, geralmente, bastante raras (BROSCHAT, 2000).

Respostas positivas com uso de N vêm sendo relatadas em palmeiras por vários autores (HARTLEY, 1977; OLLAGNIER e OCHS, 1980; ZAMORA e FLORES, 1985; TAMPUBOLON et al., 1990; BEZERRA et al., 2018), no entanto, em mudas de palmeira *Geonoma schottiana*, Aguiar et al. (1996) observaram que a adubação de NPK, não resultou em melhora no desenvolvimento das plantas, ao contrário, provocou o atraso no crescimento.

METODOLOGIA

Este trabalho trata-se de uma pesquisa quantitativa do tipo experimental. Foi conduzido no Viveiro Experimental de Plantas Ornamentais e Florestais da Universidade Estadual Paulista - Faculdade de Ciências e Agrárias e Veterinárias (UNESP/FCAV), Campus de Jaboticabal, SP UNESP/FCAV onde os frutos da palmeira juçara foram colhidos.

O delineamento experimental adotado foi o inteiramente casualizado. Foram testadas quatro doses de nitrogênio: zero, 150, 300 e 600 mg de N dm⁻³ de substrato (terra + esterco); foram cinco repetições e cada parcela foi constituída por 12 mudas, plantadas individualmente nos vasos.

O transplante para vasos de plástico com capacidade para 2,8 L foi realizado quando as plântulas estavam com 1 folha aberta, baseado em Yuyama & Mesquita (2000), para transplante de mudas de pupunha, que ocorreu 42 dias após a semeadura.

O substrato foi preparado utilizando terra de barranco e vermiculita na proporção 3:1 sendo, previamente, feita análise e correção de acidez. A análise química apresentou os seguintes resultados: pH (CaCl₂) = 6,4; M.O. = 2 g dm⁻³; P (resina) = 4 mg dm⁻³; K = 0,5 m mol_c dm⁻³; Ca = 54 m mol_c dm⁻³; Mg = 30 m mol_c dm⁻³; H + Al = 10 e V = 90%.

Utilizou-se como fonte de nitrogênio, uréia (44% de N). Por ocasião do transplante, cada vaso recebeu doses de nivelamento de P (150 mg dm⁻³), B (0,5 mg dm⁻³) e Zn (5 mg dm⁻³) conforme recomendação geral de Malavolta (1980). Como fontes de P, B, e Zn, foram utilizados, superfostato simples (18% de P₂O₅), ácido bórico (17% de B) e sulfato de zinco

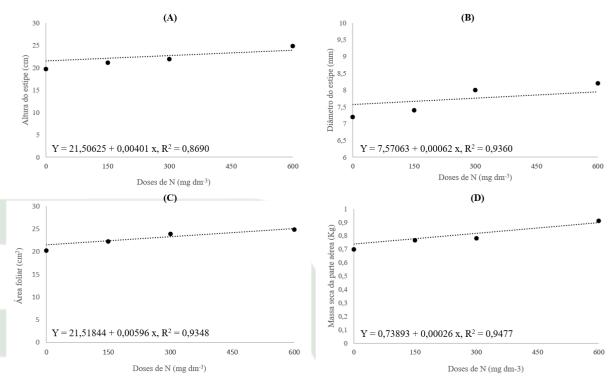
(22% de Zn), respectivamente e, também, 150 mg de K dm⁻³ de substrato.

As doses de nitrogênio foram parceladas em quatro vezes, aplicando-se 20% por ocasião do transplante, 30% quinze dias após o transplante, 30% trinta dias após o transplante e 20% quarenta e cinco dias após o transplante.

Durante o desenvolvimento das mudas, foram efetuadas pesagens e rodízio diário dos vasos, mantendo-se a umidade em torno de 70% da capacidade de substrato.

Após 90 dias do transplante, foram avaliadas: altura do estipe, em cm (do nível do substrato à última bifurcação de 2 folhas, com base em Yuyama e Mesquita, 2000), diâmetro do estipe (mm) ao nível do substrato, área foliar e determinação da massa seca da parte aérea (g). A área foliar foi determinada pelo medidor modelo LI-3100. Para as análises de massa seca, as plantas foram retiradas do vaso, lavadas visando remoção total do substrato e separadas em sistema radicular e parte aérea; após, a parte aérea das plantas foram embaladas em sacos de papel e colocadas em estufa a 65 °C até atingirem massa constante.

Os dados obtidos foram submetidos à análise de variância, com auxílio do programa estatístico AgroEstat (BARBOSA e MALDONADO JÚNIOR, 2015); foi realizada a análise de regressão polinomial a fim de verificar o comportamento das características em função do aumento das doses de N ou K.


RESULTADOS E DISCUSSÃO

Houve ajuste de regressão linear para todas as características estudadas observando-se que, com o aumento das doses de nitrogênio aumentou a altura da planta (Figura 1A), o diâmetro do estipe (Figura 1B), a área foliar (Figura 1B) e a massa seca da parte aérea (Figura 1B).

Figura 1. Comprimento (a), diâmetro do estipe (b), área foliar (c) e massa seca de da parte aérea (g) de mudas de *Euterpe edulis* em função das doses de nitrogênio.

Jaboticabal, SP, 2010.

Fonte: Própria (2020).

As mudas da palmeira juçara apresentaram resposta linear positiva para adubação nitrogenada em todas as características estudadas, ou seja, a adubação provocou maior desenvolvimento das mudas, semelhantemente ao que foi observado por vários autores (HARTLEY, 1977; OLLAGNIER e OCHS, 1980; ZAMORA e FLORES, 1985; TAMPUBOLON et al., 1990; LUZ et al., 2006; BEZERRA et al., 2018) que relataram respostas positivas com uso de N em diferentes espécies de palmeiras. Já Aguiar et al. (1996) observaram resultados diferentes em mudas da palmeira *Geonoma schottiana*, onde a adubação NPK provocou o atraso no crescimento.

Observa-se que a adubação nitrogenada foi fundamental para o desenvolvimento das mudas; todas as características apresentaram maiores médias na dose mais elevada de N (600 mg de N dm⁻³). De forma semelhante, Bezerra et al. (2018) também observou que as caracterítiscas estudadas no desenvolvimento de mudas de açaí aumentaram linearmente até a dose de 450 mg de N dm⁻³ quando utiliaram uréia como fonte de N. Luz et al. (2006) observaram que o nutriente que proporcionou maior desenvolvimento e crescimento da palmeira *Rhapis excelsa* foi o nitrogênio, influenciando de forma positiva na maioria das características analisados, ou seja, os autores também observaram maiores médias de altura e diâmetro do estipe, número de folhas, área foliar e massa seca da parte aérea em mudas que receberam adubação nitrogenada.

A fertilização nitrogenada adequada promove incremento na altura das mudas sendo

uma das características mais importantes para avaliar o padrão de qualidade de mudas de espécies florestais, correlacionando-se positivamente com o crescimento no campo (GOMES e PAIVA, 2011).

CONCLUSÕES

O nitrogênio foi fundamental para o desenvolvimento de mudas de *Euterpe edulis*.

REFERÊNCIAS

AGUIAR, F. F. A.; KANASHIRO, S.; BARBEDO, C. J. Efeito da calagem e da adubação mineral e orgânica na formação de mudas de *Geonoma schottiana* Mart. Revista Brasileira de Horticultura Ornamental, Campinas, v. 2, n. 1, p. 33-36, 1996.

BARBOSA, J.C.; MALDONADO JÚNIOR, W. **Experimentação Agronômica & AgroEstat**; Sistema para Análises Estatísticas de Ensaios Agronômicos. Gráfica Multipress: Jaboticabal. 396 p. 2015.

BEZERRA, J. L. S.; ANDRADE NETO, R. C.; LUNZ, A. M. P.; ARAÚJO, C. S.; ALMEIDA, U. O. Fontes e doses de nitrogênio na produção de mudas de açaizeiro (*Euterpe oleracea* Mart). **Enciclopédia Biosfera**, v.15, n.27; p.29-40, 2018.

BOVI, M.L.A. Cultivo da palmeira real australiana visando a produção de palmito. Campinas: Instituto Agronômico, 1998. 26p. (Boletim Técnico, 172).

BOVI, M.L.A, GODOY JÚNIOR, G., SPIERING, S.H. Respostas de crescimento da pupunheira à adubação NPK. **Scientia Agrícola**, v.59,n.1, p.161-166, 2002.

BOVI, M.L.A., CANTARELLA, H. Pupunha para extração de palmito. In: RAIJ, B. van; CANTARELLA, H., QUAGGIO, J.A, FURLANI, A.M.C. eds. **Recomendações de adubação para algunas culturas do estado de São Paulo**. Campinas, Instituto Agronômico de Campinas, 1996. p.240-242. (Boletim Técnico, 100).

BROSCHAT, T.K. **Palms nutrition guide**. Florida: University of Florida/Institute of Food and Agriculural Sciences Extension, 2000.6p. (SS-ORH-02).

GOMES, J..M.; PAIVA, H. N. Viveiros florestais. Viçosa: Editora UFV, 2011, 116p.

HARTLEY, C. W. S. The oil palm (*Elaeis guineensis* Jacq.). 2. ed. London: Longman, 1977. 806 p. (Tropical Agriculture Series).

LORENZI, H.; NOBLICK, L.; KAHN, F.; FERREIRA, E. J. L. **Flora Brasileira**: Arecaceae (Palmeiras). 1. ed. Nova Odessa: Plantarum, 2010.

LUZ, P.B., TAVARES, A.R., PAIVA, P.D.O., MASSOLI, L.A.L., AGUIAR, F.F.A., KANASHIRO, S., STANCATO, G.C., LANDGRAF, P.R.C. Efeitos de nitrógeno, fósforo e potasio no crescimento de *Rhapis excelsa* (Thunberg) Henry ex. Rehder (Palmeira-ráfia). **Ciencia e Agrotecnologia**, v.30, n.3, p.429-434, 2006.

ADUBAÇÃO NITROGENADA EM MUDAS DE Euterpe edulis L.

MALAVOLTA, E. Elementos da nutrição mineral de plantas. São Paulo: Ceres, 1980. 251p.

OLLAGNIER, M.; OCHS, R. Management of mineral nutrition in industrial oil palm plantation: fertilizers savings. Olégineux, [S.l.], v. 36, p. 539-544, 1980

PORTINHO, J. Á.; ZIMMERMANN, L. M.; BRUCK, M. R. Efeitos benéficos do açaí. **Journal of Nutrology**, v.5, n.1, p.15-20, 2012.

REGALADO, R.; BALERDI, C. La deficiencia de potasio em las palmas. Florida: University of Florida/Institute of Food and Agriculural Sciences, 2003. 5p.(Extension).

TAMPUBOLON, F. H.; DANIEL, C.; OCHS, R. Réponses du palmier à huile aux fumures azotées et phosphorées à Sumatra. Oléagineux, [S.l.], v. 45, p.475-484, 1990.

TONET, R.M., FERREIRA, L.G.S., OTOBONI, J.L.M. A cultura da pupunha. Campinas: CATI, 1999. 44p. (Boletim Técnico, 237).

YUYAMA, K, MESQUITA, S.M.S. Crescimento de mudas de pupunheira (*Bactris gasipaes*) transplantadas em diferentes estádios de plântula, substratos e volume de substrato. **Acta Amazonica**, v.30, n.3, p.515-520, 2000.

ZAMORA, F. D.; FLORES, S. Ensayo sobre niveles de fósforo em pejibaye para palmito. ASBANA, [S.l.], v. 6, p. 62-65, 1985.

